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Abstract 
 
The most widely used algorithm for estimating seismic event hypocenters and origin times is 
iterative linear least squares inversion.  In this paper we review the mathematical basis of the 
algorithm and  discuss the major assumptions made during its derivation.  We go on to explore 
the utility of using Levenberg-Marquardt damping to improve the performance of the algorithm 
in cases where some of these assumptions are violated.  We also describe how location parameter 
uncertainties are calculated.  A technique to estimate an initial seismic event location is 
described in an appendix. 
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1. Introduction 
 
The iterative linear least squares inversion algorithm is arguably the most widely used algorithm 
for locating seismic events.  This technique was originally proposed by Geiger (1910) and is 
described in detail by Jordan and Sverdrup (1981) and Lay and Wallace (1995).  The core 
algorithm is the basis for the United States National Data Center (USNDC) location applications 
and a next-generation application called LocOO currently under development  at Sandia National 
Laboratories.  The purpose of this report is to illuminate the basis of the algorithm so that users 
of the codes based on it will have a greater appreciation of its capabilities, limitations and 
idiosyncrasies.  In Section 2 we review the mathematical basis of the algorithm and  discuss the 
major assumptions made during its derivation.  This section describes material that applies to 
both the USNDC code and to LocOO.  The convergence criteria implemented by LocOO to 
determine when to terminate iteration is described in Section 3.  Sections 4 and 5 describe how 
poorly constrained events and events which involve violations of model assumptions are 
handled.  The details presented in these sections apply to LocOO but not the USNDC codes.  The 
final section describes the calculation of uncertainties on the event location parameters that is 
implemented by both LocOO and the USNDC codes.  A technique to estimate an initial seismic 
event location, described in the appendix, is unique to LocOO. 
 
2. Formulation of the Inverse Problem 
 
The seismic event location problem can be described as follows:  We are presented with N 
observations of seismic arrival times, station-to-event azimuth, and horizontal slowness, which 
we denote as a vector d of length N, and we wish to determine the location in time and space of 
the seismic event which produced the observations.  The location is described by a vector m, of 
length M = 4, which contains the event latitude, longitude, depth and origin time.  In order to find 
m, we need an operator F, which relates m and d: 
 

dmF ≅)(  (2.1) 
 
For the seismic event location problem, F is an earth model as defined by the geometry of the 
Earth and a set of travel time tables with associated corrections.   
 
The left and right sides of Equation 2.1 are only approximately equal since the observations, d, 
are corrupted by measurement errors.  The uncertainties are captured in the analysis by 
associating with each observation di and prediction Fi, data and model uncertainty estimates σd,i 
and σF,i, respectively, which have a combined uncertainty σr,i given by 
 

2
,

2
,, iFidir σσσ +=  (2.2) 

 
The σr,i  are guaranteed to be greater than zero since all observations have finite uncertainty 
(models should have uncertainties as well).  For convenience, we define an N × N diagonal 
matrix σ, containing the values σr,i.   
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Equation 2.1 is a statement of the forward problem:  given an Earth model, F, and an arbitrary 
seismic event location, m0, we can calculate a set of predictions, F(m0), of our observations, d.  
The problem we wish to solve is the inverse problem: given an Earth model, F, find m, the 
location of the seismic event that produces a set of predictions, F(m), which agree as well as 
possible with the observations, d. 
 
We must specify precisely what we mean by ‘agree as well as possible’.  To that end we define a 
vector r of weighted residuals 
 

[ )( 0
1 mFdσr −⋅= − ] (2.3) 

 
We seek the event location m that minimizes the sum of the squared weighted residuals, 2r , 

defined as 
 

∑
=

=
N

i
ir

1

22r  (2.4) 

 
Since F is non-linear, we cannot solve the inverse problem directly.  The standard approach is to 
start with an initial estimate of the event location, m0, and try to deduce an appropriate 
perturbation to that location, δm, such that 
 

mmm =+ δ0  (2.5) 
 
In other words, find the change in event location δm, which will move the event location from 
the initial estimate of the event location m0, to the event location m, that, when operated on by 
the Earth model, will produce predictions that agree as well as possible with the observations. 
Combining Equations 2.1 and 2.5 we have 
 

dmmF ≅+ )( 0 δ  (2.6) 
 
To solve Equation 2.6 for δm, we first linearize it by expanding the left hand side into a Taylor 
series 
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Ignoring all terms of order 2 and greater and substituting the remainder into Equation 2.6 yields  
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Multiplying both sides of Equation 2.8 by σ-1 yields 
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If we define a matrix A of weighted partial derivatives 
 

0

01 )(
m
mFσA

∂
∂

⋅= −  (2.10) 

 
Equation 2.9 becomes 
 

rmA ≅⋅δ  (2.11) 
 
Let us examine the terms of this equation.  The right hand side is a vector of N weighted 
residuals, defined as the differences between the observations, d, and the predictions of those 
observations derived from the Earth model, F, applied to the estimate of the event location, m0.  
The weighting factors are the combined measurement and model uncertainties.  Their inclusion 
gives greater weight in the analysis to residuals that have smaller uncertainties, and it renders all 
of the residuals unitless.   
 
The left hand side of Equation 2.9 consists of three terms.  The first is the inverse of the diagonal 
uncertainty matrix which we have already used in Equation 2.3 to weight the vector of residuals.  
The second term in Equation 2.9 describes an N × M matrix of partial derivatives of the N model 
predictions with respect to the M components of the estimated event location.  Each element of 
this matrix describes the amount by which one of the predictions will increase as a result of a 
positive change in one of the M components of the estimated event location.  When the 
predictions increase, the residuals decrease so the left hand side is a recipe for decreasing the 
residuals.  The partial derivatives are taken in Cartesian coordinates: x (easterly), y (northerly) 
and z (depth).  Coordinate axis y corresponds to the direction of increasing latitude while x 
corresponds to the direction along a great circle path that is perpendicular to the meridian that 
passes through the epicenter.  The partial derivatives of travel time, station-to-event azimuth, and 
horizontal slowness, with respect to event hypocenter and origin time are presented in Table 1.  
Azimuth derivatives are from Bratt and Bache (1988).  The third term on the left side of 
Equation 2.9, δm, is a vector of length M containing finite changes in each of the M components 
of the event location.   
 
The right and left hand sides of Equation 2.11 are related by an “approximately equal” symbol 
for two reasons.  The first, as discussed earlier, is because our measurements are corrupted by 
errors.  The second reason that Equation 2.11 is only approximately correct is because the high 
order terms in Equation 2.7 were omitted.  Equation 2.11 will be correct only to the extent that, 
in regions of the model parameter space near m0, residuals are directly proportional to changes in 
model parameters.  In this context, “near” means within a distance characterized by δm. 
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Table 1 – Partial derivatives of predicted travel time, T, station to event azimuth, Az, and 
horizontal slowness, Sh, with respect to event hypocenter and origin time.  The partial 
derivatives with respect to the event hypocenter are expressed in Cartesian coordinates: x is east, 
y is north and z is depth.  t is origin time, ∆ is the distance from the event to the station (measured 
as an angular distance at the center of the earth), and α is the azimuth from the event to the 
station measured clockwise from north.  All the derivative terms in the interior of Table 1 are 
determined by interpolation of travel time tables. 
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Because of the linearity assumption made in the derivation of Equation 2.11, m0 + δm will not, 
in general, be located at the point in parameter space where 2r  is a minimum.  If the linear 

approximation is a reasonably good one, then δm will move us to a point in parameter space, 
m0 + δm, where 2r  is smaller than it was at m0.  If we accept the improved location as the 

initial estimate for another application of Equation 2.11, then the solution will be improved 
further still.  If we continue to iteratively apply Equation 2.11 in this manner, we will ultimately 
reach a situation where the residuals are very close to the minimum we seek and the solution 
ceases to change significantly.  At that point we can conclude that we have reached convergence 
and accept the solution as the final solution.  In essence, we are breaking the larger problem of 
finding the event location m where 2r = 2

min
r  into a sequence of sub-problems each of which 

is concerned with finding a change in location, δm, that moves us closer to m.  The remainder of 
this section is concerned with solving just one of the sub-problems. 
  
Returning to Equation 2.11 we note that it tells us only how changes in a given event location 
will affect residuals between observed and predicted seismic quantities.  What we seek is the 
particular value of δm that leads to 2

min
r .  To find that value of δm, we must seek the least 

squares solution to Equation 2.11 which is found by minimizing , given by 2E
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Minimizing will yield the maximum likelihood estimate of δm (Press et al., 2002).   2E
 
Note that is not the same as 2E 2r .   relates to the solution of one iteration of the overall 

problem, not the overall problem itself.  However,  and 

2E
2E 2r  will be equal at the end of the 

last iteration when we have reached the solution to the overall problem of finding m.  At that 
point, δm will be zero (or very small), so = 2

minE 2

min
r .   

 
2
minE  is found by taking the derivative of E 2 with respect to each of the model parameters and 

setting them equal to 0: 
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Reorganizing terms, this becomes  
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or equivalently 
 

rAmAA ⋅⋅⋅ ≅ TT δ  (2.15) 
 
One way to solve Equation 2.15 is to replace matrix A by its singular value decomposition 
(SVD; Menke, 1989; Lay and Wallace, 1995).  SVD decomposes A into a set of matrices U, W 
and VT where U is an N × M column-orthogonal matrix and VT is the transpose of an M × M 
orthogonal matrix.  U and V are orthogonal in the sense that their columns are orthonormal.   The 
columns of V are M-dimensional vectors that describe the principal axes of the error ellipsoid of 
the solution vector δm.  W is an M × M diagonal matrix containing the so-called singular values 
of matrix A.  Their squared inverses describe the dimensions of the principle axes of the error 
ellipsoid.  The diagonal elements of W are all zero or positive (Press et al., 2002).     
 
Replacing A in Equation 2.15 with its singular value decomposition, U , we find TVW ⋅⋅
 

rUWVmVWV ⋅⋅ ⋅⋅=⋅⋅ TT δ2  (2.16) 
 
Noting that since U and V are orthonormal their transposes are equal to their inverses, it is 
straightforward to solve for δm 
 

rUWVm ⋅⋅⋅= − T1δ  (2.17) 
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or equivalently 
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where the subscripts i on matrices U and V indicate column numbers and wi indicates the i’th 
diagonal element of W.  Equations 2.17 and 2.18 indicate that each element of δm is a linear 
combination of the columns of V, with coefficients obtained by forming the dot products of the 
columns of U with the vector of residuals, r, scaled by the singular values.   
 
After finding δm we add it to m0 and test for convergence as described in Section 3.  If the 
convergence criteria are not satisfied, we replace m0 with m0 + δm and start another iteration. 
 
There is a minor complication that arises as a result of the fact that epicentral components of δm 
are in Cartesian coordinates (δx, δy), while those of m0 are in spherical coordinates (latitude and 
longitude).  To add δm to m0, we first compute the distance d, that the event is to be moved 
according to  
 

22 yxd δδ +=  (2.19) 
 
and the direction in which the event is to be moved according to  
 









= −

y
x

δ
δϕ 1tan  (2.20) 

 
and then move the epicentral components of m0 distance d in direction ϕ using spherical 
trigonometry.  The depth and origin time components of δm and m0 can be simply added 
together in a straightforward manner. 
 
3. Convergence Criteria   
 
Iteration is terminated when either some maximum number of iterations have been exhausted or 
when 2r ceases to change significantly.  More specifically, convergence is declared when  

 

tolerance
i

i <−
−

12

1

2

r

r
 (3.1) 

 
Where subscripts i and i–1 indicate the current and previous iterations, respectively.  A 
reasonable value for tolerance might be 1 × 10-3. 
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Convergence can also be declared when damping is being applied and small changes in location 
fail to reduce 2r  relative to its value at the conclusion of the previous iteration.  See Section 5 

for detailed discussion. 
 
4. Poorly Constrained Events 
 
Up to this point we have assumed that the solution to our problem was well constrained by the 
available data.  What if this is not the case?  The degree to which A is ill-conditioned is 
characterized by the ratio of the largest to the smallest singular values, a quantity that is referred 
to as the condition number.   
 
One of the significant advantages of the SVD algorithm is that after computing the SVD of A, 
we can examine W to assess potential difficulties and take steps to alleviate them before finally 
computing δm using Equation 2.18 (Press et al., 2002).   
 
If A is singular, then one or more of the singular values (diagonal elements of W) will be equal 
to zero and the condition number will be infinite.  The difficulty will be encountered when we 
attempt to compute Equation 2.18 since we will be attempting to divide by zero.  In this case we 
must take action before computing Equation 2.18  or our algorithm will generate an exception 
and fail. 
 
In cases where the condition number is extremely large, round off errors in the computer may 
come in to play, yielding a solution with wildly large components that send our event location 
off into regions that make no physical sense.  Fortunately, this situation appears to be rare in 
overdetermined seismic event location problems.  More common is for the condition number to 
be moderately large, in which case it is possible to solve for all of the location parameters, but it 
may not be particularly useful to do so.   The uncertainties on the combination of parameters 
corresponding to the very small singular values may be extremely large (larger than the 
dimensions of the Earth, for example) rendering the results meaningless. 
 
When we encounter a situation with a large condition number (greater than 106, say) our best 
option is to change one of the very small singular values to zero (Press et al., 2002).  As will be 
described in the next section, zero singular values will be rendered ineffectual, which causes the 
algorithm to simply not solve for the parameter that correspond to the manipulated singular 
value.  Parameters with zero singular values will not deviate from their initial estimates.   
 
 
5. Non-linear Effects  
 
It is possible for our solution to diverge, meaning that at the conclusion of a given iteration we 
find that 2r  has increased over its value at the beginning of the iteration.  This indicates failure 

of our algorithm and can be attributed to violation of the linearity assumption inherent in 
Equation 2.9.   
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Consider the 2r  hypersurface over our model parameter space.  When the linearity assumption 

is strictly valid, this hypersurface will be ellipsoidal in shape and may be highly elongated in 
some directions relative to others (Figure 1a).  For highly elongated ellipsoids, 2

min
r  will reside 

at the lowest point of a long, linear, trough-shaped surface (the tip of the long arrow in 
Figure 1a).  From any point in model parameter space, a single step described by the δm vector 
will take us to the position in model parameter space where  2r  = 2

min
r  .  Because of the 

ellipsoidal shape of the 2r  contours, however, the direction of δm will not, in general, 

correspond to the direction of steepest descent (the direction that is directly down the gradient of 
2r  with respect to the model parameters).  In fact, for extremely elongated ellipsoids, the angle 

between the direction of steepest descent and the direction of δm may approach 90°.  As an 
alternative to the linear least squares algorithm, we could take many small steps in the direction 
of steepest descent, but such algorithms tend to be very slow compared to least squares. 
  
When the linearity assumption is not valid, 2

min
r  will reside at the lowest point in a non-linear 

trough-like feature of potentially complex topology, and the position pointed to by δm may be 
characterized by a value of 2r  which is higher than the value of 2r  at the current position 

(Figure 1b).  In this case, we would be better off just taking a small step in the direction of 
steepest descent.    
 

 
F

w
l
r  
t
 

par2

par1

a) b)

P

P

 

igure 1 – Contours of constant 2r  over a 2-dimensional parameter space defined by 

parameters par1 and par2.  a) represents a case where the linearity assumption is strictly valid 
hile b) represents the case where the linearity assumption  is invalid.  Point P represents the 

ocation of the solution vector at the beginning of an arbitrary iteration.  The long arrows 
epresents the direction and length of the step calculated by the linear least squares method while
he short arrows represent the direction of steepest descent. 
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Best of all would be if we could interpolate smoothly between taking the step specified by δm 
and taking a small step in the direction of steepest descent.  A method to accomplish this was 
originally proposed by Levenberg (1944) and Marquardt (1963) and is described in Press et al. 
(2002).   To derive their algorithm we start with the linear least squares solution, Equation 2.15.   
 

rAmAA ⋅⋅⋅ = TT δ  (5.1) 
 
Marquardt’s insight was to add a positive constant term, λ, to the diagonal elements of the 
M × M matrix AT⋅A 
 

rAmIAA ⋅⋅ =+⋅ TT δλ )(  (5.2) 
 
Replacing A with its singular value decomposition, , we find TVWU ⋅⋅
 
( ) rUWVmIVWV ⋅⋅ ⋅⋅=+⋅⋅ TT δλ2  (5.3) 
 
Solving for δm yields 
 

( ) rUWIWVm ⋅⋅⋅+⋅=
− T12 λδ  (5.4) 

 
or 

( ) iki
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i ii

ii
k w

wm ,
1

2 VrU ⋅







+

≅ ∑
= λ

δ  ; k = 1, M (5.5) 

 
Equations 5.4 and 5.5 differ from Equations 2.17 and 2.18 in that 
 

( ) WIWW ⋅+→
−− 121 λ  (5.6) 

 
or, equivalently 
 

λ+
→ 2

1

ii

ii

ii w
w

w
 (5.7) 

 
This has several desirable effects.  First of all, when wi = 0, equation 2.18 returns ∞ while 
Equation 5.7 returns 0 (for λ ≠ 0).  This is highly desirable since it means that parameters with 
zero singular values (parameters that are unconstrained by the data) will contribute nothing to the 
step rather than contributing infinitely to it.  Furthermore, small singular values are affected more 
than larger ones.  This acts to reduce the elongation of highly elongated ellipsoids, making them 
more spherical and hence reducing the angle between the solution vector, δm, and the direction 
of steepest descent (see Figure 1).    
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Ultimately, the Levenberg-Marquardt transformation has two effects on δm:  δm is 
simultaneously reduced in magnitude and rotated in the direction of the direction of steepest 
descent.  When λ = 0, we have our unmodified least squares solution.  As λ → ∞, the direction 
of δm will approach the direction of steepest descent and its length will approach zero.  It 
remains only to select the appropriate value of λ such that we take as large a step as possible that 
still moves our solution down the 2r  gradient (ie., such that 2

1+i
r  < 2

i
r ). 

 
Our algorithm proceeds in the following manner: 
 
1) Begin by initializing the applied damping factor, λ, to zero at the start of the first iteration.   
2) Start each iteration i by calculating δmi, mi+1 and 2

1+i
r .   

3) If  2

1+i
r  ≥  2

i
r : 

•  discard mi+1 
• if λ = 0, set it to some minimal value λ 0, such as  .001.  If λ > 0, increase it by a factor λx 

(10 for example) 
• return to Step 2. 

4) If 2

1+i
r  <  2

i
r : 

•  replace  mi with mi+1 
• divide λ  once by λx (or set it equal zero if it is equal to λ0) 
• return to Step 2 to start the next iteration. 

 
This algorithm seeks to keep λ as small as possible by initializing it to zero and by reducing it by 
factor λx at the conclusion of each successful iteration.  Keeping λ small keeps the step size as 
large as possible.  The algorithm is willing to increase λ as much as necessary, however, to 
ensure that 2r  is never allowed to increase from one iteration to the next. 

 
It is possible that the event location mi at the start of some iteration i is characterized by a value 
of 2

i
r which is very close to 2

min
r  and a value of 2

1+i
r  that is significantly lower than 2

i
r  will 

never be found.  This situation is handled by monitoring the length of δm, an approximation of 
which is given by 
 

222 )()( vdTdzR ⋅++⋅∆=mδ  (5.8) 
 
where  
∆ is the great circle distance the epicenter moved, in radians 
R is the radius of the earth in km 
dz is the change in hypocenter depth, in km 
dT is the change in origin time, in seconds 
v is an estimate of the seismic velocity of the medium near the hypocenter (assumed to be 

constant 8 km/second). 
 

 -15-



As λ increases, mδ  will decrease.  If mδ  decreases below some threshold value (0.01 km for 
example), then the algorithm is terminated.  At this point, not only is the current iteration 
concluded but solution convergence can be declared.  The reason this conclusion can be reached 
is that repeated applications of our algorithm have failed to cause δm to point down the 2r  

gradient.  Further applications may ultimately achieve that end but only after having reduced the 
magnitude of δm so severely that it results in only a negligible change in m.  We must therefore 
be at, or very near, the value of m where 2r = 2

min
r . 

 
 
6. Uncertainty Intervals 
 
In this section, the method used to calculate uncertainty intervals surrounding the event location 
and origin time is described.  It is critical to note that the technique described here assumes that 
the uncertainties in the residuals (σ in Equations 2.3 and 2.10) are normally distributed.  If the 
residual uncertainties are not normally distributed, then the method outlined in this section is 
invalid.  The analysis also assumes that Earth model, F in Equation 2.1, is locally linear with 
respect to the seismic event location (see discussion in Section 1).   
 
After iterating to convergence we require estimates of the uncertainty in the computed model 
parameters.  We would like these uncertainties to be expressed in terms of an M-dimensional 
confidence ellipsoid surrounding the computed event location in time and space.  This ellipsoid 
defines a region in the M-dimensional model parameter space that contains some percentage of 
the total probability distribution.  For a given event, one can point to the associated confidence 
ellipsoid and say for example, “there is a 95% probability that the true event location falls within 
this region”. The larger the size of the uncertainty interval, the larger the probability that the true 
event location falls within it. 
 
Recall that our location problem was over-determined in the sense that we had more observations 
than unknown parameters.  Our solution algorithm solved this system in a least-squares sense.  In 
other words, we found the set of model parameters m that minimized the sum of the squared 
weighted residuals, 2r  (Equation 2.4) 

 
One can think of 2r  as a surface over the model parameter space.  It represents the sum of the 

squared weighted residuals corresponding to all sets of model parameters.  Our solution, m, is 
the set of model parameters that resides at the point in model parameter space where 2r  is a 

minimum.  As one moves away from m in any direction in model parameter space, 2r  

increases by some amount 2r∆ .  For a model that is linear in its parameters, a contour of 

constant 2r∆  describes an M-dimensional ellipsoid centered on the best-fit model parameters, 

m.  The larger the ellipsoid, the more of the model parameter probability space is incorporated 
within the ellipsoid.  The trick is to select an ellipsoid of just the right size, ie., choose the right 
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value of 2r∆ , so that the ellipsoid encompasses the specified percentage of the total model 

probability space.   
 
 
6.1 Shape of the Parameter Uncertainty Intervals 
 
The shape of the M-dimensional ellipsoid that describes a 2r∆ = 1 contour is returned by the 

SVD algorithm.  The columns of the M × M matrix V contain unit vectors along the principal 
axes of the ellipsoid and the lengths of the axes are inversely proportional to the squared singular 
values W2.  Here we use the W that has had small singular values set to zero, as described in 
Section 4, but has not been modified by λ, as described in Section 5. 
 
Typically, we do not wish to express the uncertainties in our model parameters as the joint 
uncertainties, as represented by V and W.  Generally, we are interested in the uncertainty in a 
single parameter (the origin time for example), independent of the uncertainties in the other 
parameters.  Or, we might like to express the joint uncertainty in two or three of the parameters 
(the event epicenter or hypocenter, for example).  To accomplish this, we must first project the 
full M-dimensional probability space onto the lower dimensional subspace of interest. 
 
First, we convert V and W into the M × M covariance matrix, C, as follows (Press et al., 2002):  
 

TVWVC ⋅⋅= −2  (6.1) 
 
or, equivalently 
 

MkMj
w
VV

C
M

i i

kiji
jk ,1;,1

1
2 === ∑

=

 (6.2) 

 
The uncertainty in a single model parameter, mi, independent of the others, is simply 
 

iiim C=,σ  (6.3) 
 
To determine the joint uncertainty in two parameters, for example, the 2 dimensional ellipse 
surrounding the epicenter of the event, take the intersection of the two rows and columns of C 
corresponding to the components of interest.  Copy these into a 2 × 2 matrix and calculate it’s 
inverse,  c.  The equation of the ellipse of interest is  
 

[ ] 1
2221

1211 =















y
x

cc
cc

yx  (6.4) 

 
where x is east, y is north and c12 = c21.  Multiplying this out yields 
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12 2
2212

2
11 =++ ycxycxc  (6.5) 

 
which is the equation for an ellipse in the x, y plane.  To remove the xy term (Beyer, 1981) rotate 
the coordinate axes about the origin through an acute angle  where γ  is the positive 
root of  

γθ 1tan−=

 
0)( 122211

2
11 =−++ cccc γγ  (6.6) 

 
Applying this algorithm we find that  
 

( )1tan 21 ++−= − εεθ  (6.7) 
 
where 122211 2)( ccc −=ε .  This is the orientation of the major axis of the ellipse relative to the x 
axis.  The strike of the major axis of the confidence ellipse, measured from north, is 90° - θ.   
 
To find the unscaled lengths of the semi-major and semi-minor axes of the confidence ellipse we 
first rotate the ellipse such that its major and minor axes align with the x and y coordinate axes, 
respectively.  This is accomplished by replacing x and y in Equation 6.5 as follows (Beyer, 
1981): 
 

θθ sin'cos' yxx −=  (6.8) 
θθ cos'sin' yxy +=  

 
If we perform this substitution, set y’ = 0, and solve for x’ we find the length of the semi-major 
axis of the ellipse 
 

( 1
22

2212
2

11 sinsincos2cos' −
++= θθθθ cccx )

)

 (6.9) 
 
Performing the substitution, setting x’ = 0, and solving for y’ we find the length of the semi-
minor axis of the ellipse: 
 

( 2
1

2
2212

2
11 cossincos2sin' −

+−= θθθθ cccy  (6.10) 
 
6.2 Sizes of the Parameter Uncertainty Intervals 
 
At this point, the uncertainty interval, whether it has one, two, three or four dimensions, encloses 
a space defined by 2r∆ = 1, which yield uncertainty intervals that contain 68.3% of the total 

probability space.  We wish to scale the magnitudes of the uncertainties such that they include 
some other, user specified, proportion of the total probability space, p (90 or 95% for example).  
Further, the uncertainty estimates assume that the uncertainties in the residuals that were used to 
weight the residuals (σ in Equations 2.3 and 2.10) were exactly equal to the actual uncertainties.  
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This may not be the case so we wish to introduce a data variance scale factor, s , to account for 
this possibility. 

2
σ

2

i

 
To accomplish these objectives, we scale the magnitudes of the uncertainties by a factor  

which consists of two terms: a statistical term that relates the value of 

2
pκ

2r∆  to the probability 

that the true event location falls within the uncertainty ellipse defined by r∆ , and , defined 

above.  There are two end-member methods of estimating the appropriate value for , and a 

continuum in between.  After determining , we simply multiply the model uncertainties 

(standard errors) by  in order to scale them so that they enclose the desired percentage of the 
total probability space. 

2
σs
2
pκ

2
pκ

pκ

 
6.2.1 Confidence Uncertainty Intervals 
 
The first possibility relies entirely on a posteriori information (Flinn, 1965).  It is based on the 
premise that the residuals that remain after we have obtained the best fit event location 
accurately reflect the actual data variances.  A plausible estimate of the data variance scale 
factor, given the best fit solution just obtained, is the mean squared weighted residual that 
resulted from the inversion 
 

MN
s iaposterior −

=
2

2 r
 (6.11) 

 
Recall that r is the vector of observed – predicted values, divided by the uncertainty in the 
residuals.  If each observed value differed from the prediction by exactly the value of the 
uncertainty, then each element of r would be 1, 2r would equal N 2 and  ≅ 1 for 

N >> M.  Values of  significantly less than or greater than 1 might suggest that the 
original estimates of the uncertainties in the residuals were too large or small, respectively. 

2
aposteriors

2
iaposteriors

 
These considerations suggest that s  is a reasonable estimate of , so long as N >> M.  

When N is small,  may be too large since the denominator is N – M, not N.   can 

also be a poor estimate of  by coincidence when N is small since there are few samples.   

2
iaposterior

2
σs

2
iaposteriors 2

iaposteriors
2
σs

 
For confidence uncertainty intervals, we set s  = . 2

σ
2

iaposteriors
 
When using only a posteriori information, the appropriate statistical parameter is the 
F-Distribution probability function and  becomes 2

pκ
 

[ MNMFMs pp −= ,''22
σκ ] (6.12) 
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where M’ is the number of components included in the joint uncertainty calculation (M’ ≤ M) 
and   is the F-statistic at the p confidence level with M’ and N-M degrees of 
freedom.   

[ MNMFp −,' ]

 
6.2.2 Coverage Uncertainty Intervals 
 
The next possibility is that the residual variances were, in fact, known perfectly a priori 
(Evernden, 1969).  Perhaps we have high confidence that the data and model uncertainties that 
were introduced into the analysis when the residual vector and the derivative matrix were 
weighted in Equations 2.3 and 2.10 were actually correct.  In this case set = 1.  

Alternatively, if many estimates of  had been accumulated in a series of prior 

experiments in which events in the same region had been located then we could define  to 
be the mean normalized data variance observed during some number of prior experiments, J: 

2
aprioris

2
iaposteriors

2
aprioris

 

jiaposterior

J

j
apriori s

J
s )(1 2

1

2 ∑
=

=  (6.13) 

 
For coverage uncertainty intervals, we set = . 2

σs 2
aprioris

 
When using only a priori information, the appropriate statistical parameter is the Chi-Square 
probability function, , and  becomes [ '2 Mpχ ]

]

]

2
pκ

 
[ '222 Ms pp χκ σ=  (6.14) 

 
6.2.3 K-weighted Uncertainty Intervals 
 
These two possibilities can be considered end-members of a continuous spectrum in which both 
a priori and a posteriori information about the data variances are used (Jordan and Sverdrup, 
1981).  To incorporate both types of information, we redefine  
 

[ MNKMFMs pp −+= ,''22
σκ  (6.15) 

 
and define the data variance scale factor  
 

MNK
Ks

s apriori

−+

+
=

22
2 r
σ  (6.16) 

 
where K is an integer that can range from 0 to ∞.  When K = ∞, = , 

, and we obtain coverage uncertainty intervals.  When K = 0, 

2
σs 2

aprioris

]'[],'[' 2 MMFM pp χ=∞
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2
σs = , and we obtain confidence uncertainty intervals.  For intermediate values of K, the 

uncertainty intervals reflect both a priori and a posteriori information about the data variances.  
Jordan and Sverdrup (1981) recommend setting K = 8. 

2
iaposteriors

 
We use algorithms supplied by Press et al. (2002) to compute χp

2 and Fp for any desired 
confidence level. 
 
7. Conclusion 
 
In this paper, we have reviewed the mathematical basis of the linear least squares inversion 
algorithm, which is the most widely used algorithm for estimating seismic event hypocenters and 
origin times.  We have placed particular attention on the assumption of linearity of the 
predictions of the observations with respect to the seismic event location, showing how the 
assumption arises in the derivation and discussing its implications.  We also outlined the 
damping technique used by LocOO to improve its performance in situations where the linearity 
assumption is violated.  Finally, we described the methods implemented to calculate the 
uncertainties on the calculated seismic event location. 
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Appendix 
Initial estimate of event location 

 
Most seismic event location algorithms require an initial estimate of the event hypocenter and 
origin time.  This appendix describes a technique for obtaining such an estimate from a set of 
seismic observations.  The event location is estimated in the order presented below with 
subsequent estimates superceding previous estimates. 
 
Travel time 
 
If there are no travel time observations, then the location algorithm is aborted.  Otherwise, the 
station which observed the earliest arrival time (which corresponds to the shortest travel time) is 
selected.  The initial estimate of the event location epicenter is set to the latitude and longitude of 
this station, the depth is set to zero, and the initial estimate of the event origin time is set to 100 
seconds earlier than the arrival time observed at this station. 
 
Azimuth observations 
 
If there are azimuth observations, then it is very important that the initial estimate of the event 
location be within the correct quadrant for most of the azimuth observations (Bratt and Bache, 
1988).   
 
A single azimuth observation 
 
If there is only a single azimuth observation, then LocOO places the initial estimate of the event 
location 10 degrees away from the station that made the azimuth observation, in the direction of 
the azimuth observation.   
 
Two azimuth observations 
 
If there are two azimuth observations, then we want to set the event location to the great circle 
intersection defined by the two station locations/azimuth observations.  This location is 
calculated as follows: 
 
1. For each of the two stations, determine the latitude and longitude of a point 90° away from 

the station in the direction of the observed azimuth. 

2. For each of the two stations, convert both the station location and the location of the 90° 
point computed in step 1 to 3-component unit vectors centered at the center of the earth. 

3. For both stations, compute the elements of the unit vector that is normal to the plane defined 
by the station vector and the 90° point.  This is the normalized cross product of the station 
vector and the 90° point vector. 

4. Compute the cross product of the two normal vectors.  This vector will point to one of the 
two great circle intersections defined by the two planes containing the station locations and 
the azimuth directions.  Note that if the two normal vectors are parallel to each other, the 
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length of the cross product will be zero and it is not possible to obtain a valid estimate of the 
event location using this technique. 

5. In general, two planes through the center of the Earth intersect at two points on the surface of 
the earth which are on exactly opposite sides of the globe.  The cross product of the two 
normal vectors calculated in step 4 will point to one of these points but it may not be the one 
that is pointed to by the two observed azimuth observations.  To determine if we are pointing 
to the correct great circle intersection, compute the dot product of the great circle intersection 
vector and the 90° point vector associated with either of the two stations.  If the dot product 
is less than zero, then we are pointing at the wrong great circle intersection and the great 
circle intersection vector should be flipped 180° to point to the correct intersection. 

 
More than two azimuth observations 
 
If there are more than two azimuth observations, compute the great circle intersection vectors of 
each pair of observations and calculate the sum of all the vectors.  Use this location as the initial 
estimate of the event epicenter.  Pairs of azimuth observations which lie along the same great 
circle path will generate great circle intersection vectors with zero length and hence will not 
contribute to the final location estimate.  Non-parallel pairs of azimuth observations will have 
contributions that are weighted by the angle at which they intersect, with perpendicular 
observations contributing the most. 
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